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Abstract: Work by Kirby, et al. (2006) showed that combinatorial optimization of matrix/vector multiplication could lead to faster evaluation of finite element
stiffness matrices. Using relationships between rows, an efficient set of operations can be generated to perform matrix-vector multiplication. My improved graph
model of this problem solves this combinatorial optimization problem optimally for binary row relationships. | extend the representation by using hypergraphs to
model more complicated row relationships, expressing an n-row relationship with an n-vertex hyperedge. My initial greedy algorithm for this hypergraph model
has yielded significantly better results than the graph model for many matrices.

Motivation

» Reducing redundant operations in building
stiffness matrices

- Generate code to optimize construction of local
stiffness matrices

- Many local stiffness matrices built
- Reuse optimized code when problem is rerun

Possible Optimizations

Number of Nonzeros

y3 =0 | 0 MAPs
Y1 = 2x1 1 MAP

Optimization Problem

Objective: To minimize the number of
multiply add pairs (MAPs) in matrix/vector
multiplication

Matrix-Vector Multiplication

Kirby, et al. showed that each element of FE local stiffness
matrix can be calculated by the following Frobenius product:
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Flattening the stiffness matrix into a vector, we get a matrix-

vector multiplication operation (y=Ax) with the following inner Yo = 2331 Bl 2372 2 MAPs
products for each row:
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Linear Combinations
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Graph Example

84 438

2 1 18 10 7 7 0 1

0 4 -4-8 63 34 B 147
B . 165 108 15 43
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Graph MST(5) 693 589 443 366

, : 1218 1070 867 678
* Relationships between rows represented by edges between

corresponding vertices . .
» Additional edges connect each vertex to IP vertex, representing 3D Laplace FErari Matrices, Matvec Costs
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- Edge weights are MAP cost for particular operation 330 177 94 [
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* In my work, I used Prim's algorithm to calculate MST

Directed Hyperedge

* Modified Prim's algorithm to include hyperedges

* Polynomial time algorithm

» Solution no longer a tree

* No guarantee of optimum solution for hypergraph

*optimal

Partial Scalar Multiple Edges Solution (MST)

Matrix-Vector Multiplication Timings

2D Laplace FErari Matrices
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Modified Prim’s Algorithm
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Hypergraph Model Results

2D Laplace FErari Matrices, Matvec Costs
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- 10,000 matrix vector multiplications per timing

Future Work

* Larger size hyperedges

- Have implemented 3 and 4 vertex hyperedges
- Higher degree perhaps useful for 3D FE problems

* More nearly optimal and optimal solution methods
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